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Abstract. Directional Compton profiles of face-centred cubic Al are calculated by the augmented-
plane-wave method and compared with experimental ones. In general, a theoretical Compton profile
which is based upon the IPM (independent-particle model) is a little greater than the experimental
one around the origin of the momentum space. In this work, correlation effects are introduced
into the results of IPM band calculations and the agreement of theory and experiment is improved
very much.

1. Introduction

The Compton effect was discovered by Arthur Compton in 1923. It is a Doppler broadening
of inelastically scattered x-ray or γ -ray radiation. The backward scattering of the effect gives
the Compton profile which provides information about the initial momentum distribution of
the recoiled electrons. That is,

J (qz) =
∫ ∫

N(q) dqx dqy (1)

where N(q) is the electron momentum density [1]. In the IPM (independent-particle model)
the momentum density is given by the following equation:

N(q) =
∑
Ei�EF

ρi(q;Ei) =
∑
Ei�EF

|χi(q;Ei)|2 (2)

where ρi(q;Ei) is the momentum density of the state i with energy Ei and χi(q;Ei) is the
momentum wave function, and the summation runs over all states whose energies are below
the Fermi energy. In the non-interacting electron gas system, the momentum density of the
state within the Fermi sphere is unity and outside the Fermi sphere it is zero, i.e.

ρi(q) =
{
δ(q − qi) |q| � qF

0 |q| > qF
(3)

where qF denotes the Fermi momentum. The Compton profile for the non-interacting electron
gas system is, therefore, simply an inverted parabola as illustrated in figure 1, i.e.

J (qz) ∝
{
q2

F − q2
z qz � qF

0 qz > qF.
(4)

It is well known [2] that electron interaction in an electron gas system has the effect of modifying
the occupation numbers n(q) in such a way that the states at q > qF become partially occupied,
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Figure 1. A schematic figure showing the relation between the energy dispersion curve E(q) and
the Compton profile J (q) for an electron gas system together with that between the momentum
occupation function n(q) and the energy occupation function n(E). The dotted lines show n(q),
n(E) and J (q) with the correlation effect. EF denotes the Fermi energy and qF the Fermi
momentum.

as shown by the dotted curves in figure 1. Consequently Lundqvist and Lyden [3] introduced
the notion that the Compton profile J (q) for an interacting electron gas system is lowered
in the region of small momentum and raised to non-zero values for momenta greater than
the Fermi momentum, as shown in the figure. Nevertheless, there are no drastic effects of
electron correlation and in fact equation (4) is good to a first approximation. In fact, Kubo
et al [4] estimated the Compton profiles for Al without the electron correlation effect by the
APW method and obtained a fairly good agreement with experiments especially as regards
the anisotropy. Recently, however, the accuracy of experimental data has been improved very
much and the effect can be discussed numerically. So far, correlation effects on Compton
profiles have been estimated by using the Lam–Platzman correction [5] for some transition
metals, by introducing the momentum occupation function n(p) for a correlated electron
gas system for Be [6] and Mg [7], by introducing the phenomenological energy-dependent
occupation probability function n(E) for Cr and V [8], and by an elaborate first-principles
calculation of the spectral function within theGW -approximation for lithium and sodium [9].
Recently, Matsumoto et al [10] estimated the Compton profiles for Mg by the APW method
and compared the results with those of the experiments performed by Garreau and Loupias
[11] whose FWHM (full width of half-maximum) was 0.2 au. When the electron correlation
effect was introduced using the actual electron-density parameter of Mg, i.e. rs = 2.66 au, the
agreement with experiments was improved very much but still some disagreement persisted.

Very recently, Sourtti et al [12] measured the Compton profiles for Al and studied the
electron correlation effects using the Lam–Platzman correction. A good fit was obtained when
they used a suitable value for the break at the Fermi momentum. The Lam–Platzman correction
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is, however, isotropic and cannot applied to the directional difference of the Compton profiles.
Ohata [13] also measured the Compton profiles for Al using synchrotron radiation whose
FWHM was 0.1 au. In this paper we estimate the electron–electron correlation effect on the
Compton profiles due to the conduction electrons of Al and make comparisons between the
available experimental profiles obtained by Ohata and the theoretical ones with a correlation
correction.

2. Method of calculation

A self-consistent potential of fcc Al is determined by the conventional APW method within
the LDA (local density approximation). The value of the lattice constant a used is 7.6517 au.
The energy values and wave functions are calculated at 505 k-points in one 48th of the fcc
BZ (Brillouin zone). The 505 k-points make a cubic mesh. The edge length of each cube
is a 16th of the distance between � and H. In order to determine the eigenfunctions, about
one hundred APWs are used in the expansion of the wave functions outside the muffin-tin
spheres (interstitial region), and the wave functions inside a muffin-tin sphere whose radius is
ri are expanded up to l = 4, where l denotes the angular momentum quantum number. The
eigenfunction ψb,k(r;E) with the eigen-energy E thus determined is expressed as

ψb,k(r;E) ∝




eik·Rn

∑
lm

ilBlm,b,kRl(|r − Rn|;E)Ylm(r − Rn) |r − Rn| � ri∑
Kn

A
Kn

b,keik+Kn·r interstitial region
(5)

which is normalized to unity, i.e.∫
|ψb,k(r;E)|2 d3r = 1.0. (6)

Here the coefficients A and B are to be determined by the APW equation. The momentum
wave function is a Fourier transform of the eigenfunction defined by the formula

χb,k(q;E) = (2π)−3/2
∫
ψb,k(r;E)e−iq·r d3r (7)

which is also normalized to unity, i.e.∫
|χb,k(q;E)|2 d3q = 1.0. (8)

The momentum wave function obtained from the APW can be written as the sum of the
functions χb(k + Kn;E), i.e.

χb,k(q;E) =
∑
Kn

δq,k+Kn
χb(k + Kn;E). (9)

The summation over Kn runs over the 1459 reciprocal-lattice vectors in this study. The
momentum density ρb(k + Kn;E) at each q-point (q = k + Kn) for up to the ninth band
is obtained from |χb(k + Kn;E)|2. Without the correlation effect, the momentum-density
distribution is obtained from

N(q) =
∑
b

∑
E�EF

ρb(q;E). (10)

The Compton profiles are computed by integrating N(q) over a series of planes cor-
responding to different momenta qz as shown in equation (1). These integrations are carried
out by counting the momentum densities on each plane whose values are obtained at 64 k-points
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in each cube by a linear interpolation procedure. The cube is divided into eight smaller cubes.
Within each smaller cube, the parameters for the linear functions for the energy eigenvalue
and momentum density:

E(k) = exkx + eyky + ezkz + e0 (11)

ρ(q) = ρxqx + ρyqy + ρzqz + ρ0 (12)

are determined by using the values at the four corners of the smaller cube. The procedure for the
integration of, for example, J (qz) along the 〈100〉 direction is as follows. Figure 2 shows the
(001) cross section of the repeated-zone scheme for fcc BZ. A k-point in the first BZ is denoted
by a large dot and some (k + Kn)-points are denoted by small dots. The integration is carried
out only within one 48th of each BZ instead of the whole BZ by altering the equation, i.e.

J (qz) =
∑
b,Kn

δq,k+Kn

∫ ∫
1st BZ

ρb(k + Kn;E) dkx dky

= 8{J(100)(q) + J(010)(q) + J(001)(q)}. (13)

Here

J(100)(q) =
∑
b,Kn

δq,|k+Kn|
∫ ∫

1/48 BZ
ρb(k + Kn;E) dky dkz

J(010)(q) =
∑
b,Kn

δq,|k+Kn|
∫ ∫

1/48 BZ
ρb(k + Kn;E) dkz dkx

J(001)(q) =
∑
b,Kn

δq,|k+Kn|
∫ ∫

1/48 BZ
ρb(k + Kn;E) dkx dky.

(14)

Figure 2. A (001) cross section of the repeated-zone scheme of the fcc Brillouin zone. The large dot
denotes a k-point in the first Brillouin zone and small dots denote (k + Kn)-points in the repeated
zones. Arrows indicate the projection onto the x- or y-axis.
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The value of the momentum density at a q-point is added to the value at each array element
for the three partial profiles J(100)(q), J(010)(q), and J(001)(q).

Compton profiles with the electron correlation correction are calculated from the equation

J (qz) =
∑
b

∫ ∫ ∫
n(E)ρb(q;E) dqx dqy dE =

∫
n(E)J (qz, E) dE (15)

where n(E) is an energy-dependent occupation probability function defined later. In order to
carry out the calculation of equation (15), energy-dependent Compton profiles J (qz, Ei) are
first calculated from

J (qz, Ei)&E =
∑
b

∫ ∫ ∫ Ei

Ei−&E
ρb(q;E) dqx dqy dE. (16)

Here the value of&E is 0.022 Ryd. The calculation of the energy-dependent Compton profiles
J (qz, E) is also performed using a similar procedure for the calculation of the IPM J (qz).

3. Results and discussion

The energy-dependent Compton profiles J (qz, Ei) of Al along the 〈100〉, 〈110〉, and 〈111〉
directions, with convolution with a Gaussian of FWHM 0.1 au corresponding to the width of
the resolution function for the experiment performed in reference [13], are shown in figure 3
together with that of the free-electron system J (qz, E).

The energy-dependent Compton profile J (qz, E) of the free-electron system is defined
by differentiating the Compton profile with respect to energy E. As has been mentioned, the
Compton profile of the free-electron system up to qmax is an inverted parabola:

J (qz) ∝
{
q2
max − q2

z = E − q2
z |qz| �

√
E

0 |qz| >
√
E

(17)

where E = q2
max . Thus, the energy-dependent Compton profile of the free-electron system is

reduced to

J (qz, E) ∝ dJ (qz)

dE
=

{
1 |qz| �

√
E

0 |qz| >
√
E.

(18)

As seen from figure 3(a), the form of the energy-dependent Compton profiles is a totally flat
plateau with a parabolic border that is a sharp cliff. On the plateau of the profile for Al, there is
less structure in a region of lower energy and some structure around the Fermi energy, due to the
BZ boundary effect. The structures in the profiles for the three directions differ from each other.
When J (qz, E) is integrated along the energy axis from the bottom of the band to the Fermi
energy, the conventional IPM Compton profile J (qz) is obtained. When J (qz, E) is integrated
along the momentum axis, on the other hand, the density-of-states curve N(E) is obtained.
The Fermi energy EF is determined to be 0.6493 Ryd from the density-of-states curve.

As usual, around the origin of the momentum axis the values of the IPM Compton profiles
are a little greater than the experimental ones and in the higher-momentum region the opposite
is true. In order to investigate the difference between theory and experiment, which is assumed
to be due to the electron–electron correlation effect, an energy occupation function n(E) is
introduced which is similar to that introduced in reference [8]. The momentum occupation
function n(q) was first introduced by Daniel and Vosko [2]. In the electron gas system the
energy E of an electron is proportional to the squared momentum q, i.e. E ∝ q2. We adopt
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Figure 3. Energy-dependent Compton profiles J (qz, E). (a) shows those in a free-electron system.
(b), (c), and (d) show those calculated from the band theory for Al along 〈100〉, 〈110〉, and 〈111〉
directions, respectively, convoluted with a Gaussian of FWHM 0.1 au. EF denotes the Fermi
energy.

the momentum occupation function n(q) defined by Cardwell and Cooper [14] which is as
follows:

n(q) =




1 − aq2/q2
F − d(1 − q/qF) q � qF

a(q − b)2/(qF − b)2 qF < q � b

0 b < q.

(19)

Substituting q = √
E into the above equation, we obtain the energy occupation function as
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follows:

n(E) =




1 − aE/EF − d(1 −
√
E/

√
EF) E � EF

a(
√
E −

√
Eb)

2/(
√
EF −

√
Eb)

2 EF < E � Eb

0 Eb < E.

(20)

As the electron-density parameter rs of Al is 2.08 au, the values of a and d are estimated from
the figures showing the momentum occupation function n(q) given as figure 2 of reference [2]
to be 0.16 and 0.03 respectively. Eb is the point at which n(E) becomes zero and is determined
from the following normalization condition:∫ EF

�1

N(E)(1 − n(E)) dE =
∫ Eb

EF

N(E)n(E) dE (21)

where �1 denotes the energy at the bottom of the 4s band of Al, which is −0.1657 Ryd.
The density-of-states histogram calculated for the same energy values as were used to

obtain the energy-dependent Compton profiles shown in figure 3 is shown in figure 4, together
with the histogram of the energy occupation function n(E) determined from it.

Figure 4. Histograms of the density of statesN(E) (at the top) and the energy occupation function
n(E) (at the bottom) for Al, i.e. for the electron-density parameter rs = 2.08 au. EF denotes the
Fermi energy and Eb the point at which n(E) becomes zero.

�1 is situated at E2, EF = E39, and Eb = E84. Using the energy occupation function, the
theoretical Compton profile with correlation correction is defined as follows:

J corr(qz) =
nmax∑
i=1

n(Ei)J (qz, Ei)&E. (22)

In order to investigate the difference in detail, we show the differences between the
experimental profile and the theoretical one without the correlation correction in figure 5
(as dots) together with the correlation-corrected theoretical profiles (as solid lines) which are
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Figure 5. Profiles of the difference between experiment and the IPM (dots: &J(E−I)), the
correlation-corrected results (solid lines: &J corr), and the difference between experiment and
the theory with correlation correction (dotted lines: &J(E−C)), along three major axes. Some error
bars of the experiment are shown by the symbols I.

defined as follows:

&J corr(qz) = J corr(qz)− J (qz) = −
EF∑
�1

J (qz, E)&E (1 − n(E)) +
Eb∑
EF

J (qz, E)&E n(E).

(23)

The differences between experiment and the theory with the correlation correction are also
shown in figure 5 (as dotted lines). The agreement between experiment and theory is improved
very much by introducing the correlation correction, but still some discrepancy remains.
Comparing &J corr and &J (E−I) it is seen that around the origin and in the higher-momentum
region the magnitudes are different from each other, but the subtle structures are similar. As
seen from the dotted curves &J (E−C), the experimental values are still bigger in the higher-
momentum region and smaller around the origin.

Figure 6 shows the directional difference for the Compton profile, 〈111〉−〈110〉, together
with that of the angular correlation of positron annihilation radiation taken from figure 8 in
reference [4] for comparison. It is seen that below the Fermi momentum qF, the correlation
effect reduces the anisotropy remarkably and improves the agreement between theory and
experiment very much. As seen from the figures, the difference curves have a concavity at
a momentum value around 0.5 au and a sharp peak at around 0.85 au. The origin of the
peak was discussed in reference [4]: it was ascribed to the Fermi surface geometry of fcc Al,
especially around the L point. In figure 3(d) the source of the peak is indicated by p. The
agreement between theory and experiment for the angular correlation is still better than that
for the Compton profile.
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Figure 6. The directional difference for the Compton profile, 〈111〉 − 〈110〉 (at the top), and that
for the angular correlation of positron annihilation radiation (at the bottom). At the top, the dots
denote the experimental values measured by Ohata [13], the dashed line is that for the IPM, and
the solid line is that with correlation correction, with the electron-density parameter rs = 2.08 au.
Some error bars of the experiment are shown by the symbols I. At the bottom, the figure is taken
from figure 8 in reference [4]. The solid line denotes the theory and the dashed one the experimental
results.

If the experiment is precise enough and we need to achieve better agreement, there may
be several possible ways to improve it. In order to reduce the difference between theory and
experiment in figure 5:

(a) simply use a stronger correlation effect, i.e. use a bigger rs-value;

(b) use theGW -approximation or one beyond the RPA (random-phase approximation) instead
of using the phenomenological correlation effect;

(c) use a different core contribution which has smaller values around the origin and larger
ones in the region of momentum above the Fermi momentum; or

(d) use some method beyond the impulse approximation or fully relativistic scattering theory.

In order to reduce the directional difference in figure 6:

(e) use the FLAPW programs.

In conclusion, we may say that we can almost reproduce the experimental Compton
profiles for Al by taking into account the electron correlation effect phenomenologically,
and the difference which still remains between theory and experiment should be discussed on
the basis of more elaborate experiments and more reliable theory for the electron correlation
effect.
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